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Abstract. We construct a unified recurrence operator method for obtaining explicit expressions
for the wavefunctions of shape-invariant potentials. It is found that the normalized coefficients
for the energy eigenfunctions satisfy a universal recurrence relation. The procedure is illustrated
in detail for four potentials. We work out the normalized explicit wavefunctions of Hulthen
potential, for which the normalized explicit wavefunctions have not been previously calculated.

1. Introduction

After introducing the concepts of supersymmetry [1] and shape invariance [2] in non-
relativistic quantum mechanics, the energy eigenvalues can be worked out algebraically
for almost all exact solvable potentials [2–5]. Using operator techniques, Duttet al [6]
and Dabrowskaet al [7] have obtained unnormalized explicit wavefunctions for shape-
invariant potentials with a translation of parameters. Recently, Barclayet al [4] discovered
a large class of new shape-invariant potentials with a scaling ansatz for the change of
parameters, and they also obtained unnormalized explicit expressions for the eigenfunctions
of these potentials. However, using operator techniques, how to obtain normalized explicit
expressions for the eigenfunctions of shape-invariant potentials is still an open question [8].
In view of the fact that shape-invariant potentials have not been exhausted [9], establishing
a theory to calculate the normalized explicit wavefunctions for shape-invariant potentials is
of considerable interest.

In this paper, we propose a unified recurrence operator method to calculate the
normalized explicit wavefunctions for shape-invariant potentials within the framework of
supersymmetric quantum mechanics. It has been found that the normalized coefficients
for the wavefunctions of shape-invariant potentials satisfy a universal recurrence relation.
Using the usual factorization methods, it is very difficult to obtain the normalized explicit
eigenfunctions for some shape-invariant potentials (such as the modified Pöschl–Teller
potential, the Hulthen potential, etc). However, for these potentials we can also obtain
their normalized explicit wavefunctions by using the present recurrence operator method,
and not using the special functions. We suggest that the unified recurrence operator method
is useful in obtaining the normalized explicit wavefunctions of the shape-invariant potentials
with the help of computer software such asMathematica.

0305-4470/98/204763+10$19.50c© 1998 IOP Publishing Ltd 4763
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2. The universal recurrence operator method

The one-dimensional stationary Schrödinger equation is[
− h̄2

2m

d2

dx2
+ V (x)

]
9(x) = E9(x) (1)

where9(x) is the wavefunction,V (x) the potential andE the energy. The unnormalized
ground-state wavefunction90(x) is written as

90(x) = exp

(
−
√

2m

h̄

∫
W(x) dx

)
= exp

(∫
Z(x) dx

)
(2)

whereW(x) is called a superpotential. Substituting equation (2) into (1) gives

Z′ + Z2 = υ(x)− ε0 (3)

whereυ(x) = 2mV (x)/h̄2, ε0 = 2mE0/h̄
2 andE0 is the ground-state energy. Equation (3)

is a nonlinear Riccati equation.

In terms of the superpotentialW(x), the supersymmetric partner potentialsV+(x) and
V−(x) are given by [3]

V+(x) = W 2(x)+ h̄√
2m

dW(x)

dx
(4)

V−(x) = W 2(x)− h̄√
2m

dW(x)

dx
. (5)

Also, the operatorsA andA+ are given by

A+ = − h̄√
2m

d

dx
+W(x) (6)

A = h̄√
2m

d

dx
+W(x). (7)

If V+(x) andV−(x) have similar shapes, they are said to be shape invariant, and they satisfy
the following relation [2]

V+(x, a0) = V−(x, a1)+ R(a1) (8)

wherea0 is a set of parameters,a1 is a function ofa0 (a1 = f (a0), say) and the remainder
R(a1) is independent ofx. The Hamiltonians corresponding to the potentialsV+(x) and
V−(x) are given by

H+(x, a0) = − h̄
2

2m

d2

dx2
+ V+(x, a0) (9)

H−(x, a0) = − h̄
2

2m

d2

dx2
+ V−(x, a0). (10)

Gendenshtein [2] showed that the energy spectrum ofH−(x, a0) is given by

E
(−)
0 = 0 E(−)n =

n∑
k=1

R(ak) ak = f k(a0) (11)

while its unnormalized energy eigenfunctions are given by [7]

9
(−)
n+1(x, a0) = A+(x, a0)9

(−)
n (x, a1). (12)
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The potentialsV (x) andV−(x, a0) have the following relation [5]:

V (x) = V−(x, a0)+ E0. (13)

Thus, the energy eigenfunctions for the potentialsV (x) andV−(x, a0) are the same. In all
subsequent discussions, we only consider wavefunctions ofV−(x, a0), so the superscript (−)
will be suppressed for simplicity. In order to find recurrence relations for the normalized
coefficients, we now carry out the following calculations:∫ ∞
−∞

92
n+1(x, a0) dx =

∫ ∞
−∞

9n+1(x, a0)A
+(x, a0)9n(x, a1) dx

=
∫ ∞
−∞

9n+1(x, a0)

(
− h̄√

2m

d

dx
+W(x, a0)

)
9n(x, a1) dx

= − h̄√
2m
9n+1(x, a0)9n(x, a1)|∞−∞ +

∫ ∞
−∞

h̄√
2m
9n(x, a1)

d9n+1(x, a0)

dx
dx

+
∫ ∞
−∞

9n+1(x, a0)W(x, a0)9n(x, a1) dx.

Whenx →±∞, 9n+1(x, a0) and9n(x, a1) are equal to zero, so we obtain∫ ∞
−∞

92
n+1(x, a0) dx =

∫ ∞
−∞

9n(x, a1)

[
h̄√
2m

d

dx
+W(x, a0)

]
9n+1(x, a0) dx

=
∫ ∞
−∞

9n(x, a1)

[
h̄√
2m

d

dx
+W(x, a0)

][
− h̄√

2m

d

dx
+W(x, a0)

]
9n(x, a1) dx

=
∫ ∞
−∞

9n(x, a1)

[
− h̄2

2m

d2

dx2
+W 2(x, a0)+ h̄√

2m

dW(x, a0)

dx

]
9n(x, a1) dx

=
∫ ∞
−∞

9n(x, a1)H+(x, a0)9n(x, a1) dx (14)

whereH+(x, a0) can be written as

H+(x, a0) = − h̄
2

2m

d2

dx2
+ V+(x, a0) = − h̄

2

2m

d2

dx2
+ V−(x, a1)+ R(a1)

= H−(x, a1)+ R(a1). (15)

Substituting (15) into (14) yields∫ ∞
−∞

92
n+1(x, a0) dx =

∫ ∞
−∞

9n(x, a1)[H−(x, a1)+ R(a1)]9n(x, a1) dx

=
∫ ∞
−∞

9n(x, a1)[E
(−)
n (a1)+ R(a1)]9n(x, a1) dx

= [E(−)n (a1)+ R(a1)]
∫ ∞
−∞

92
n(x, a1) dx. (16)

LettingNn+1(a0) andNn(a1) be the normalized coefficients for9n+1(x, a0) and9n(x, a1),
respectively, we have∫ ∞
−∞

N2
n+1(a0)9

2
n+1(x, a0) dx

= N2
n+1(a0)[E

(−)
n (a1)+ R(a1)]

1

N2
n (a1)

∫ ∞
−∞

N2
n (a1)9

2
n(x, a1) dx

= N2
n+1(a0)[E

(−)
n (a1)+ R(a1)]

1

N2
n (a1)

= 1. (17)
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This leads to

Nn+1(a0) = Nn(a1)

[E(−)n (a1)+ R(a1)]1/2
. (18)

This is a universal recurrence relation for all the shape-invariant potentials.
With the help of equations (12) and (18), we can work out the normalized explicit

wavefunctions for all the known shape-invariant potentials. To clarify the whole procedure,
we will explicitly compute the first few normalized energy eigenfunctions for four shape-
invariant potentials (Coulomb, Morse oscillator, modified Pöschl–Teller and Hulthen
potential (s state)).

3. Applications

3.1. Coulomb potential

V (r) = − 1

4πε0

e2

r
. (19)

The equivalent potential for the radial motion is given by

Vl(r) = − 1

4πε0

e2

r
+ h̄

2l(l + 1)

2mr2
.

We obtain the following from [5]

E(−)nr
(a1)+ R(a1) = me4

2h̄2

[
1

a2
0

− 1

(a1+ nr)2
]

nr = 0, 1, 2, . . . (20)

A+(r, a0) = − h̄√
2m

(
d

dr
+ a0

r
− σ

2a0

)
(21)

χ0(r, a0) = ra0 e(−σ/2a0)r (22)

wherea0 = l + 1, a1 = a0 + 1 andσ = me2/2πε0h̄
2. The radial wavefunctionR(r) has

been written in the formR(r) = χ(r)/r.
From the normalized condition∫ ∞

0
N2

0(a0)

(
χ0(r, a0)

r

)2

r2 dr = 1

we obtain the normalized coefficients by using equations (18) and (20):

N0(a0) =
[(
a0

σ

)2a0+1

0(2a0+ 1)

]−1/2

(23a)

N1(a0) =
[(
a0+ 1

σ

)2a0+3

0(2a0+ 3)
me4

2h̄2

(
1

a2
0

− 1

(a0+ 1)2

)]−1/2

(23b)

N2(a0) = 2h̄2

me4

[(
1

a2
0

− 1

(a0+2)2

)(
1

(a0+1)2
− 1

(a0+2)2

)(
a0+ 2

σ

)2a0+5

0(2a0+ 5)

]−1/2

.

(23c)

The unnormalized wavefunctions are obtained by using equations (12), (21) and (22):

χ1(r, a0) = − h̄√
2m

[
2a0+ 1− σ

2

(
1

a0+ 1
+ 1

a0

)
r

]
ra0e−(σ/2(a0+1))r (24a)
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χ2(r, a0) = h̄2

2m

[
(2a0+ 3)(a0+ 1)− (2a0+ 3)

σ

2(a0+ 2)
r

−σ
2

(
1

a0+ 2
+ 1

a0+ 1

)
(a0+ 2)r + σ

2

(
1

a0+ 2
+ 1

a0+ 1

)
σ

2(a0+ 2)
r2

+
(
a0

r
− σ

2a0

)(
2a0+ 3− σ

2

(
1

a0+ 2
+ 1

a0+ 1

)
r

)
ra0+1 e−(σ/2(a0+2))r

]
.

(24b)

We putn = nr + l+ 1. By using equations (23) and (24) and after algebraic simplification,
we obtain the normalized wavefunctions

R1,0(r) = 1

a
3/2
B

2 e−r/aB (25a)

R2,0(r) = 1

(2aB)3/2

(
2− r

aB

)
e−r/2aB (25b)

R2,1(r) = 1

2
√

6a3/2
B

r

aB
e−r/2aB (25c)

R3,0(r) = 1

(3aB)3/2

[
2− 4r

3aB
+ 4

27

(
r

aB

)2]
e−r/3aB (25d)

whereaB = 2/σ = 4πε0h̄
2/me2, which is Bohr radius. These results are the same as those

obtained in [10] through the usual factorization method.

3.2. Morse oscillator potential

V (x) = U0[e−2αx − 2 e−αx ]. (26)

Using the factorization method, Nieto and Simmons [11] obtained the exact normalized and
closed-form eigenfunctions written in terms of associated Laguerre polynomials

9n(x) = N(n, λ)yλ−(1/2)−ne−y/2L(2λ−2n−1)
n (y) 06 n 6 [λ− 1

2] (27)

whereλ = (2mU0/h̄
2a2)1/2, y = 2λ e−αx and

N(n, λ) =
[
α(2λ− 2n− 1)0(n+ 1)

0(2λ− n)
]1/2

. (28)

Letting Z(x) = A e−αx + B, substituting this into equation (3) yields

A = β B = α

2
− β

whereβ = √2mU0/h̄.
On using equations (4), (5), (8) and (11), we obtain

R(a1) = h̄2

2m
(a2

0 − a2
1) (29)

E(−)n (a0) = h̄2

2m
(a2

0 − a2
n) (30)

wherea0 = (α/2)− β, a1 = a0+ α. From equations (29) and (30), we get

E(−)n (a1)+ R(a1) = h̄2

2m
[a2

0 − (a0+ nα + α)2]. (31)
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The operatorA+(x, a0) and unnormalized ground-state wavefunction90(x, a0) are given
by

A+(x, a0) = − h̄√
2m

(
d

dx
+ β e−αx + a0

)
(32)

90(x, a0) = exp

(
− β
α

e−αx + a0x

)
. (33)

From ∫ ∞
−∞

N2
0(a0)9

2
0(x, a0) dx = 1

we obtain the normalized coefficients for the first three wavefunctions by using
equations (18) and (31):

N0(a0) =
√
α

(2β/α)a0/α[0(−2a0/α)]1/2
(34a)

N1(a0) = 1

(2β/α)(a0+α)/α

[
α

0(−2(a0+ α)/α)
]1/2[

− h̄2

2m
(2a0+ α)α

]−1/2

(34b)

N2(a0) =
(

2β

α

)−(a0+2α)/α[
− h̄2

2m
(2a0+ 3α)α

]−1/2[
− h̄2

2m
(2a0+ 2α)2α

]−1/2

×
[

α

0(−2(a0+ 2α)/α)

]1/2

. (34c)

According to the definition of the gamma function, we have forNn(a0)

a0+ nα < 0

which leads to

n <

√
2mU0

h̄2α2
− 1

2
.

This condition is consistent with the conclusion in the literature [11].
The unnormalized wavefunctions are obtained from equations (12), (32) and (33):

91(x, a0) = − h̄√
2m
(2β e−αx + 2a0+ α) exp

(
− β
α

e−αx + (a0+ α)x
)

(35a)

92(x, a0) = h̄2

2m
[4β2 e−2αx + (10βα + 8βa0) e−αx + 4a2

0 + 10a0α + 6α2]

× exp

(
− β
α

e−αx + (a0+ 2α)x

)
. (35b)

By using equations (34) and (35) and after algebraic simplification, we obtain the normalized
wavefunctions

90(x) =
(

α

0(2λ− 1)

)1/2

(2λ)(2λ−1)/2 exp

(
− 2λ− 1

2
αx − λ e−αx

)
(36a)

91(x) =
(

α

(2λ− 2)0(2λ− 3)

)1/2

(2λ)(2λ−3)/2(2λ− 2− 2λ e−αx)

× exp

(
− 2λ− 3

2
αx − λ e−αx

)
(36b)
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92(x) =
(

2α

(2λ− 3)(2λ− 4)0(2λ− 5)

)1/2

(2λ)(2λ−5)/2

×[2λ2 e−2αx − 2λ(2λ− 3) e−αx + 2λ2− 7λ+ 6]

× exp

(
− 2λ− 5

2
αx − λ e−αx

)
(36c)

where we have used the substitution ofλ = β/α. These results are consistent with the
results obtained from equation (27).

3.3. Modified P¨oschl–Teller potential

V (x) = − h̄
2

2m
λ(λ+ 1)sech2x. (37)

From [5] we obtain

E(−)n (a1)+ R(a1) = 2h̄√
2m
(n+ 1)a1− h̄2

2m
(n2− 1) n = 0, 1, 2, 3, . . . (38)

A+(x, a0) = − h̄√
2m

(
d

dx
−
√

2m

h̄
a0 tanx

)
(39)

90(x, a0) = (sechx)−(
√

2m/h̄)a0 (40)

wherea0 = h̄λ/
√

2m, a1 = a0− h̄/
√

2m.

From ∫ ∞
−∞

N2
0(a0)9

2
0(x, a0)dx = N2

0(a0)
[2(
√

2m/h̄)a00((
√

2m/h̄)a0+ 1)]2

(
√

2m/h̄)a00(2(
√

2m/h̄)a0+ 1)
= 1

the normalized coefficients are obtained by using equations (18) and (38)

N0(a0) =
[√

2m

h̄
a00

(
2

√
2m

h̄
a0+ 1

)]1/2[
2(
√

2m/h̄)a00

(√
2m

h̄
a0+ 1

)]−1

(41a)

N1(a0) =
[√

2m

h̄

(√
2m

h̄
a0− 1

)
0

(
2

√
2m

h̄
a0− 1

)]1/2

×
[

2(
√

2m/h̄)a0−10

(√
2m

h̄
a0

)(
2

√
2m

h̄
a0− 1

)1/2]−1

(41b)

N2(a0) = (
√

2m/h̄)

[(√
2m

h̄
a0− 2

)
0

(
2

√
2m

h̄
a0− 3

)]1/2

×
[

2(
√

2m/h̄)a0−2

(
2

√
2m

h̄
a0− 3

)1/2[ 4h̄√
2m

(
a0− h̄√

2m

)]1/2

×0
(√

2m

h̄
a0− 1

)]−1

(41c)

where we have used the gamma function, which is defined as0(x) = ∫∞0 tx−1 e−t dt . Using
equations (12), (38) and (39), we obtain the unnormalized wavefunctions

91(x, a0) = h̄√
2m

(
2

√
2m

h̄
a0− 1

)
(sechx)(

√
2m/h̄)a0−1 tanx (42a)



4770 C-S Jia et al

92(x, a0) =
(

2

√
2m

h̄
a0− 3

)[
− h̄2

2m

(√
2m

h̄
a0− 2

)
sech−1 x + h̄2

2m
sechx + h̄a0√

2m
tanx

]
×(sechx)(

√
2m/h̄)a0−2 tanx. (42b)

By using equations (41) and (42) and after algebraic simplification, we obtain the normalized
wavefunctions

90(x) = (λ0(2λ+ 1))1/2

2λ0(λ+ 1)
sechλx (43a)

91(x) =
(
(λ+ 1)0(2λ)

2λ−10(λ)

)1/2

tanxsechλ−1x (43b)

92(x) = 1

2λ0(λ)
(2(λ− 2)(2λ− 2)(2λ− 3)0(2λ− 3))1/2[(2λ− 1) tan2 x − 1]sechλ−2x.

(43c)

These results are the same as those in [12] expressed in terms of universal associated-
Legendre polynomials by using a hyperbolic function transformation.

3.4. Hulthen potential

V (r) = − V0

exp(r/a)− 1
V0, a > 0. (44)

The equivalent potential for the radial motion is given by

Vl(r) = − V0

exp(r/a)− 1
+ h̄

2l(l + 1)

2mr2
.

For the s state (l = 0), we obtain the following from [9]

E(−)nr
(a1)+ R(a1) = h̄2

2m

[(
a2

0 − β
2a0

)2

−
(
(n+ 1)2a2

1 − β
2(n+ 1)a1

)2]
nr = 0, 1, 2, . . . (45)

A+(r, a0) = − h̄√
2m

(
d

dr
+ a0

eαr − 1
+ a

2
0 − β
2a0

)
(46)

χ0(r, a0) = (eαr − 1)a0/α e−((a
2
0+β)/2a0)r (47)

wherea0 = α, a1 = a0+ α, α = 1/a, andβ = 2mV0/h̄
2. χ(r) is defined asχ(r) = rR(r).

From the normalized condition∫ ∞
0
N2

0(a0)

(
χ0(r, a0)

r

)2

r2 dr = 1

we obtain the normalized coefficients by using equations (18) and (45)

N0(a0) =
√
α

[
B

(
β

2a0
− a0

α
,

2a0

α
+ 1

)]−1

(48a)

N1(a0) =
√
α

[
h̄√
2m
B

(
β

αa0+ α2
− a0

α
− 1,

2a0

α
+ 3

)

×
[(
a2

0 − β
2a0

)2

−
(
(a0+ α)2− β

2(a0+ α)
)2]1/2]−1

(48b)
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N2(a0) =
√
α

[
h̄2

2m
B

(
β

αa0+ 2α2
− a0

α
− 2,

2a0

α
+ 5

)
×
[(
(a0+ α)2− β

2a0+ 2α

)2

−
(
(a0+ 2α)2− β

2a0+ 4α

)2]1/2]−1

×
[(
a2

0 − β
2a0

)2

−
(

4(a0+ α)2− β
4(a0+ α)

)2]−1/2

(48c)

where we have used Beta function, which is defined as

B(x, y) =
∫ ∞

0

zy−1

(1+ z)x+y dz x, y > 0.

The unnormalized wavefunctions are obtained by using the equations (12), (46) and (47)

χ1(r, a0) = − h̄√
2m

[
(a0+ α)eαr +

(
a2

0 − β
2a0

− (a0+ α)2+ β
2(a0+ α)

)
(eαr − 1)+ a0

]
×(eαr − 1)((a0+α)/α)−1 exp

[
− (a0+ α)2+ β

2(a0+ α) r

]
(49a)

χ2(r, a0) = h̄2

2m

[
2a0+ α
eαr + 1

+ a
2
0 − β
2a0

− (a0+ 2α)2+ β
2(a0+ 2α)

]
×
[
(a0+ 2α)eαr +

(
(a0+ α)2− β

2(a0+ α) − (a0+ 2α)2+ β
2(a0+ 2α)

)
(eαr − 1)+ a0+ α

]
×(eαr − 1)(a0/α)+1 exp

[
− (a0+ 2α)2+ β

2(a0+ 2α)
r

]
+ h̄

2

2m

[
(a0+ 2α)eαr +

(
(a0+ α)2− β

2(a0+ α) − (a0+ 2α)2+ β
2(a0+ 2α)

)
(eαr − 1)

]
×α(eαr − 1)(a0/α)+1 exp

[
− (a0+ 2α)2+ β

2(a0+ 2α)
r

]
. (49b)

We putn = nr + 1. By using equations (48) and (49) and after algebraic simplification, we
obtain the normalized wavefunctions

R1,0(r) =
√
α

B((β/α2)− 1, 3)

eαr − 1

r
e−((α

2+β)/2α)r (50a)

R2,0(r) =
√
α

[
3

2
α eαr + 3

2
α + β

4α
− β

4α
eαr
]

×
[
B

(
β

2α2
− 2, 5

)[(
α

2
− β

2α

)2

−
(
α − β

4α

)2]1/2]−1 eαr − 1

r

×e−((4α
2+β)/4α)r (50b)

R3,0(r) =
√
α

[
rB

(
β

3α2
− 3, 7

)[(
4α2− β

4α

)2

−
(

9α2− β
6α

)2]1/2

×
[(
α2− β

2α

)2

−
(

16α2− β
8α

)2]1/2]−1

×
[(

3α

eαr − 1
− 2

3

β

α
− α

)(
3α eαr −

(
α

2
+ 5

12

β

α

)
(eαr − 1)+ 2α

)
+3α2 eαr −

(
α2

2
+ 5β

12

)
(eαr − 1)

]
(eαr − 1)2 e−((9α

2+β)/6α)r . (50c)
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Special mention may be made of the Hulthen potential. As far as we are aware, the
normalized energy eigenfunctions (s state,l = 0) have not been explicitly worked out in
the literature for this potential.
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